Directional Oscillations, Concentrations, and Compensated Compactness via Microlocal Compactness Forms
نویسندگان
چکیده
منابع مشابه
Compensated Compactness for Differential Forms in Carnot Groups and Applications
In this paper we prove a compensated compactness theorem for differential forms of the intrinsic complex of a Carnot group. The proof relies on a L–Hodge decomposition for these forms. Because of the lack of homogeneity of the intrinsic exterior differential, Hodge decomposition is proved using the parametrix of a suitable 0order Laplacian on forms.
متن کاملIsometric Immersions and Compensated Compactness
A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2 which can be realized as isometric immersions into R3. This problem can be formulated as initial and/or boundary value problems for a system of nonlinear partial differential equations of mixed elliptic-hyperbolic type whose mathematical theory is largely incomplete. I...
متن کاملCompensated Compactness and the Heisenberg Group
Jacobians of maps on the Heisenberg group are shown to map suitable group Sobolev spaces into the group Hardy space H1. From this result and a weak∗ convergence theorem for the Hardy space H1 of the Heisenberg group, a compensated compactness property for these Jacobians is obtained. 0. Introduction We investigate compensated compactness properties of Jacobians of maps on the Heisenberg group a...
متن کاملUltraparabolic H-measures and compensated compactness
We present a generalization of compensated compactness theory to the case of variable and generally discontinuous coefficients, both in the quadratic form and in the linear, up to the second order, constraints. The main tool is the localization properties for ultra-parabolic H-measures corresponding to weakly convergent sequences.
متن کاملCompensated Compactness for 2d Conservation Laws
We introduce a new framework for studying two-dimensional conservation laws by compensated compactness arguments. Our main result deals with 2D conservation laws which are nonlinear in the sense that their velocity fields are a.e. not co-linear. We prove that if uε is a family of uniformly bounded approximate solutions of such equations with H−1-compact entropy production and with (a minimal am...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2014
ISSN: 0003-9527,1432-0673
DOI: 10.1007/s00205-014-0783-4